Turing Machines

This article covers the uncomputable function BB. BB(n,k) is the maximum number of steps taken by any n-state k-symbol halting Turing machine. As a historically-important special case, BB(n,2) is OEIS A60843, also known as S(n).

Some machines require a non-zero initial tape, which can be accounted for by appending the length of the initial tape to the symbol count: we treat them as shorthand for machines which use one state per symbol to write the initial tape before jumping to their main algorithm.

Summary

The following diagram summarizes known values and problems relative to BB. It is hard to read due to relatively high dimensionality; the solid violet barrier from the top to the left gives known values of BB, the blue wall is given by Rogozhin's machines, and the other known implementations are a smattered constellation of dots.

Interval tree of gauge for BB

Known Values

BB(1,k) is defined as 1 for all k.

BB(n,k)2 symbols34
2 states6383,932,964
321
4107
547,176,870

This table is tight in the sense that all unknown cells are bounded by the hardest open problems in mathematics, known as cryptids.

Tables of Values

Goldbach conjecture

SourceProgram Name/ParametersBB(n,k)
Code Golf Addict 2016(27, 2)(27, 2)
Showalter 2016(47, 2)(47, 2)
LittlePeng9 2013('goldbach.tm', 0)(54, 4)
O'Rear 2016goldbach.nql(432, 2)

Period 32 Laver table

SourceProgram Name/ParametersBB(n,k)
Taylor 2016(64, 2)(64, 2)

Erdős–Lagarias conjecture

SourceProgram Name/ParametersBB(n,k)
Stérin & Woods 2021(5, 4)(5, 4)
Stérin & Woods 2021(15, 2)(15, 2)

Interp(Tag(2))

SourceProgram Name/ParametersBB(n,k)
Rogozhin 1996(2, 18)(2, 18)
Rogozhin 1996(3, 10)(3, 10)
Rogozhin 1996(4, 6)(4, 6)
Rogozhin 1996(5, 5)(5, 5)
Rogozhin 1996(7, 4)(7, 4)
Rogozhin 1996(10, 3)(10, 3)
Rogozhin 1996(24, 2)(24, 2)

Catalan–Mersenne conjecture

SourceProgram Name/ParametersBB(n,k)
LittlePeng9 2013('catalan-mersenne.tm', 2)(29, 4)
LittlePeng9 2013('catalan-mersenne.tm', 2)(29, 4)

Fermat prime conjecture

SourceProgram Name/ParametersBB(n,k)
LittlePeng9 2013('fermat-prime.tm', 9)(40, 4)

Weak Goldbach conjecture

SourceProgram Name/ParametersBB(n,k)
LittlePeng9 2013('goldbach-ternary.tm', 0)(79, 13)

Legendre conjecture

SourceProgram Name/ParametersBB(n,k)
LittlePeng9 2013('legendre.tm', 9)(39, 4)

Odd perfect number

SourceProgram Name/ParametersBB(n,k)
LittlePeng9 2013('odd-perfect.tm', 0)(79, 13)

Pólya's problem

SourceProgram Name/ParametersBB(n,k)
LittlePeng9 2013('polya.tm', 0)(37, 6)

Riemann hypothesis

SourceProgram Name/ParametersBB(n,k)
Aaronson & Matiyasevich 2016riemann-matiyasevich-aaronson.nql(734, 2)
O'Rear 2016riemann.nql(916, 2)

Con(ZF)

SourceProgram Name/ParametersBB(n,k)
O'Rear 2016zf2.nql(748, 2)
O'Rear 2016zf.nql(1887, 2)